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SUMMARY 

A numerical procedure has been developed to compute the inviscid super/ 

hypersonic flow fields about complex vehicle geometries accurately and 

efficiently. A second-order accurate finite difference scheme is used to 

integrate the three-dimensional Euler equations in regions of continuous 

flow, while all shock waves are computed as discontinuties via the Rankine- 

Hugoniot jump conditions. Conformal mappings are used to develop a 

computational grid. The effects of blunt nose entropy layers are computed 

in detail. Real gas effects for equilibrium air are included using 

curve fits of Mollier charts. All of the aforementioned procedures are 

reported in detail in Ref. 1, and the resulting computer code is documented 

in Ref. 2. This report deals only with modifications to these procedures in four 

specific areas: inlet mass ingestion, subsonic axial Mach number, improved 

conformal mappings, and vehicles flying at yaw. In each area both the 

modifications to the computational procedures and computer code are discussed. 

INTRODUCTION 

The prediction of the steady three-dimensional inviscid flow fields 

about advanced supersonic vehicles is of great interest to the designer. Most 

data necessary to develop a high-speed vehicle are presently obtained from 

wind tunnel tests which are expensive, slow, and sometimes inadequate. The 

goal of this work was to create a computer code to be used to supplement 

experimental data in the development of high-speed vehicle configurations. 

This code should meet three basic requirements. The first is applicability. 

To obtain the required accuracy in computing the flow over a wide variety 

of geometries for a wide range of Mach numbers and angles of attack, the Euler 

equations must be solved. Small perturbation techniques yield accurate 

results only for the flow over slender bodies flying at low supersonic 

Mach numbers and small angles of attack, while Newtonian theory yields useful 

results only for large Mach numbers. Neither of these theories can yield 

all the details of the flow even over their particular range of applicability. 



The second requirement is efficiency. The calculation of the flow field 

over a complete vehicle should take no longer than two hours on the CDC 6600 

computer. This requirement can only be met by reducing the number of mesh 

points needed to obtain an accurate solution and keeping the program logic 

as simple as possible. Computational techniques that "capture" the shocks 

in the flow field require too many mesh points to obtain acceptable results 

(Ref. 3). The three-dimensional method of characteristics is rejected 

because of its extreme complexity in program logic. 

The last requirement is that the code should be a user-oriented tool. 

This is in contrast to codes that are tailor-made for a particular configura- 

tion (Ref. 4), and codes that must be constantly monitored "to nurse the 

solution through critical regions" (Ref. 5). The designer should only have 

to specify the vehicle geometry and flight conditions to obtain reliable 

results in a directly usable form (aerodynamic coefficients, boundary layer 

inputs, etc.). The vehicle geometry should be input via techniques that, 

on the one hand, are of the same level of advancement as those used in the 

best incompressible, supersonic and hypersonic three-dimensional tools, and, 

on the other hand, posses longitudinal and cross-sectional continuity 

needed when solving partial differential equations. The geometry package 

of Ref. 6 was used to meet these requirements. 

The general numerical scheme used to solve this problem has been developed 

by Moretti (Refs. 7-10). It follows a number of basic guidelines: 

A second-order accurate finite difference marching technique 

(satisfying the CF'L stability condition) is used to integrate 

numerically the governing partical differential equations 

All shock waves in the flow field are followed, and the Rankine- 

Hugoniot conditions are satisfied across them 

The intersection of two shocks of the same family is computed 

explicitly 

Conformal mappings are used to develop a computational grid 

The body boundary condition is satisfied by recasting the 

equations according to the concept of characteristics 



0 The edge of the entropy layer on blunt nose vehicles is 

followed from its origin, and special devices are used 

to form derivatives across it 

l Real gas effects are included (equilibrium air) when 

appropriate by using curve fits of Mollier charts 

0 Sharp leading edges on wing are computed using a local 

two-dimensional solution 

The details of all of these procedures are discussed in Ref. 1. This 

report discusses a number of advances to the methods of Ref. 1: 

0 A procedure for including the effects of intake installations 

on external flow fields 

l A scheme for integrating through a region in the flow 

field where the total Mach number is supersonic while 

its component in the marching direction is subsonic 

0 A new conformal mapping procedure 

0 The ability to compute the flow about a vehicle when 

the free stream velocity vector is not contained in the 

geometric symmetry plane 

All of these advances are discussed in detail. In addition, typical 

results are shown and all code modifications listed. 

INLET MASS INGESTION 

Computational Procedure 

In this area the intent was to include the effect of a flow through inlet 

system on the vehicle flow field. The inlet face is assumed to be planar and 

normal to the marching direction. The calculation proceeds by marching to 

the inlet station where the geometry cross-section jumps from the cross- 

section without the inlet to the cross-section with the inlet. The cross- 

sectional flow field data are interpolated onto the grid bounded by the 
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cross-section with the inlet. In addition,' the velocity directions on the 

body are changed to match the new body boundary conditions. 

Typical Results 

Figure la is a comparison of the shock patterns on an aircraft config- 

uration with an inlet and the same configuration with its under surface faired 

from the nose to the inlet face. There is an additional shock generated 

by the inlet lower lip. Figure lb shows the corresponding under surface, 

symmetry plane pressure distribution. 

Code Modifications 

The geometry code being used did not have to be changed to include the 

inlet mass ingestion capability. The flow field code (STEIN) requires only 

the position of the inlet station (ZINLET) as additional data. This 

quantity is read at the end of the second input card. If the configuration 

under consideration does not have an inlet, this quantity should be set 

to a station before the starting station. 

SUBSONIC AXIAL MACH NUMBER 

Computational Procedure 

The only inherent limitation in a marching technique like the one of Ref. 

1 is that the Mach number component in the marching direction (Fig. 2) must be 

supersonic. As an illustration of the limitations of a standard marching 

technique, Fig. 3 shows regions of applicability of a standard marching for 

a circular cone (marching direction is the cone axis). In the computation 

of three-dimensional flow fields, regions of subonic axial and supersonic 

total Mach number have been encountered quite often. The procedure, which 

was developed to integrate through regions of subsonic axial Mach number, 

is reported in detail in Ref. 11. The scheme basically involves marching 

in a rotated direction, to preserve the proper domain of dependence of 

each computational grid point. Figure 4a shown a group of grid points in 

the X, Z plane (X is a coordinate measured normal to the body; X = 0 is the 

body; Z is the marching direction). The data at Z. (points A', B', C', D' 
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are given) and the data at Z. + Z are to be found. Shown in the figure are the 

down-running characteristics (dotted lines) at Z. + AZ. At point C, 

the down-running characteristic moves ahead of the plane (Z. + AZ), so that 

information from ahead of this plane (i.e., point E) must be allowed to 

affect point C. This grid point is typical of a subsonic axial Mach number 

point. The grid point B has a supersonic axial Mach number and can be computed 

with a standard marching technique. In addition, the boundary point A can be 

computed with a standard marching technique. The grid point D has a near 

sonic axial Mach number so that for efficiency it can be computed with the 

subsonic axial Mach number scheme. At the points C and D a rotated coordinate 

system (< = X and n = X + aZ, c1= AX/AZ) is used (Fig. 4b). The procedure 

implicitly marches from one n = constant plane to the next with difference 

equations: 

’ ‘FN+l K-1 - FN-l ,l)‘2Ax , , 

F 
rl II (FN K - FN K-l)/aAZ 

, , 

These difference formulas are implicit since the 5 derivatives are taken at 

the n = constant plane of interest. In this way the proper domain of 

dependence of grid points is preserved. The data at a point like C depends 

upon the data at E (Fig. 4a). 

Typical Results 

To test the procedure, a problem free of complication (but having a 

region of subsonic Mach number in the marching direction) is chosen. The 

problem was that of the flow in a two-dimensional duct where the lower wall 

remains straight while the upper wall expands. To generate an imbedded region 

of subsonic Mach number in the marching direction, this direction was 

chosen such that there was a 50" angle between it and the initial velocity 

direction. Figure 5 shows the duct, marching direction, computer isobars, 

and the region of subsonic Mach number in the marching direction. This 

entire flow field was computed using the technique developed for region of 

subsonic axial Mach number. The dashed lines in Fig. 5 are the exact, simple 

wave isobars at the beginning and end of the expansion. The computed results 
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compare quite well with the exact solution. This problem, although 

somewhat trivial, proved that the procedure is stable and yields accurate 

results. 

The second problem we applied this technique to was that of computing 

the flow over a blunted cone with a flare. The marching direction must 

be the cone axis, since the problem is symmetric about this axis. Figure 6 

shows the flared portion of this geometry in addition to the shocks, isobars, 

and region of subsonic axial Mach number. In this computation the region of 

subsonic axial Mach number was computed using the technique presented here, 

while the surrounding flow was computed using a standard marching technique. 

This computation indicates that the procedure described here can be used with 

a standard marching technique. 

Figure 7 shows the results of a computation of the flow about another 

blunted, flared cone. In this case, the region of subonic axial Mach number 

extends from the cone surface to the imbedded'shock. As in the previous 

result, only the region of subsonic axial Mach number was computed using 

the new technique. 

To demonstrate this procedure in three-dimensional computations, the 

problem of the low Mach number flow over a canopy was considered. Figure 8 shows 

results of this computation. The free stream Mach number is 1.7, so that 

the surface Mach number is about 1.6 before the canopy (Z = S), and the 

compression from the canopy forces a bubble of subsonic axial Mach number. 

Figure 8a shows the body, canopy shock, and the region of w < a in side view; 

Figs. 8b, c, d, and e are cross-sectional views. In this case, the 

bubble of subsonic axial Mach number calculation is carried out in the X-Z 

plane, X being the computational coordinate normal to the body. 

Code Modification 

The new procedure for regions of subsonic axial Mach number is auto- 

matically implemented when required. No additional input data are required. 
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CONFORMAL MAPPINGS 

Computational Procedure 

A new more powerful conformal mapping procedure has been developed by 

Moretti (Ref. 12), and in this work it has been applied to the code of 

Ref. 1. The procedure involves the repeated application of the simple 

Karman-Trefftz transformation. 

An example of a complex vehicle cross-section in a z = constant plane 

is shown in Fig. 9a (dashed line). The goal of the mapping reduces to 

transforming this cross section into one which is more circular (Fig. 9g), 

so that a polar coordinate system (r,0) can be used. To achieve this goal, 

the corners (points number l-5 in Fig. 9a) in the cross section must be 

eliminated. In terms of complex variable w = x + iy and 5 = re i0 , a Karman- 

Trefftz transformation may be written: 

9< 5-l n/6 W--w -=- 
c+l 

! i 
-* W+W 

J< 
where w is the complex coordinate of the corner (w -* is its conjugate) and 6 

is the internal angle of the corner. The mapping procedure simply 

involves the repeated application of this transformation at each 

corner. 

It became apparent early in this work that the order in which the corners 

were eliminated was important. The best results were achieved if the corner 

with the largest external angles was mapped first. Figure 9 shows a sequence 

of cross sections as each corner in Fig. 9a is eliminated. Figure 9g shows 

the cross section after all the corners were eliminated; the final coordinate 

system used is polar r, 8 in the < space. 

Typical Results 

Figure 10 shows the grid lines 8 = constant in the physical space 

resulting from the use of this mapping technique for several configurations 

of different cross sections. The concentration of grid lines in critical 

regions (wing tips, etc.) is demonstrated in the figure. This concentration 

is required for any successful computation. 



Figure 11 shows an application of these mappings to a simple conical 

cambered wing. The figure shows span-wise surface pressure distributions on 

an elliptic cone and a corresponding cambered ellipse (tip angle = -20"). The 

effect of spanwise cambering is to reduce the large tip expansion and there- 

fore the subsequent recompression. This reduction is important in terms 

of boundary layer separation. 

Figure 12 shows a series of computed cross-sectional shock patterns. 

The geometry was the X24C-121 large dihedral wing configuration, which 

required four Karman-Trefftz transformations to generate a grid. 

Code Modifications 

The application of this mapping procedure was not automated during the 

current effort. The mappings must be very closely related to the geometry 

definition. The geometry/mapping package has not yet been developed. 

The results of Fig. 12 were computed using a pilot code. 

YAW 

Computational Procedure 

The work of Ref. 1 assumed a plane of symmetry for the flow field. 

Therefore, the free stream velocity vector was taken in the geometric 

symmetry plane. The code of Ref. 2 was modified to eliminate this restriction 

so that flows with the free stream velocity vector at angle f3 out of this 

geometric symmetry plane could be computed. The modification involved 

elimination of the sya-metry conditions and the computation of both sides of the 

geometric symmetry plane. The only problems encountered were of a book- 

keeping and coding nature, so they will not be discussed here. 

Typical Results 

Figure 13 is a comparison of the under surface streamline patterns on 

the X24C-121 configuration at three yaw angles. The shifting of the 

confluence of streamlines with increasing f3 can be seen from the figure. 

Figure 14 shows the cross-sectional shock patterns for the X24C-121 

configuration at B = 5'; the figure shows the asymmetry in the shocks. 



Figure 15 is a comparison of surface pressures on the X24C-121 at 8 = 0 

and 8 = 5O. At 8 = 0, the pressure exhibits a local maximum at the 12th 

grid point and an expansion at the turn on the upper portion of the cross 

section. At 8 = 5O, there is a local maximum in pressure only on the wind- 

ward side of the configuration. 

A configuration study was performed using the yaw capability developed 

during this effort. Three configurations were studied and are shown in 

Fig. 16. These configurations were studied primarily to determine the effects 

of yaw on inlet flow fields. Figure 17 presents the flow direction at the 

inlet face (which is essentially uniform across inlet face) versus the 

free stream S for all three configurations. The figure shows that the 

local 6 is smaller than the free stream value for all three configurations. 

Figure 18 shows the same flow direction plot, but for one configuration 

X24C-L16 at two different Mach numbers. Figure 19 is an attempt to show 

the variation of inlet Mach number with free stream Mach number for 8 = 0" and 

B = 2.5'. The effect of 8 on the local Mach number is imperceptible. 

Code Modifications 

The computer running times and core requirements have essentially been 

doubled by adding this yaw capability to the code of Ref. 2. The only 

additional input data required are the value of the yaw angle BETA (in degrees), 

which is read on data card number 12. The starting solution codes (BLUNT, 

SHARP) have also been modified for the yaw capability, with the restriction 

that the starting geometry have a circular cross-section. 

CONCLUSIONS 

All of the modifications discussed in this report have enhanced the 

capabilities of the code of Ref. 1 significantly. They all represent steps 

toward the ultimate goal of a flow field prediction tool that can be used 

simply in the design of advanced vehicles. 

It was proven during this work that a great deal of flexibility could 

be gained by using the newly developed mapping procedures of Moretti. As 

mentioned previously the use of these mappings requires a geometry definition 

package more closely tied to the mappings than presently available. 
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